
A User’s Guide to Radiation Units in Athena++

Avery Bailey

There are two hooks for defining a radiation unit system in Athena++.
The first is through the use of T unit , density unit , length unit , and

molecular weight in the radiation block of the input file. The second unit

system is set by prat and crat . Either of these hooks may be selected by

the input file variable unit = 1 or 0 respectively with the latter being the
default. Ultimately, either hook is valid and we will go over the best practices
for usage, but the former is more user friendly and will be our starting point.
In this document, quantities which are unitless and unit-full will be explicitly
marked with a ‘code’ or ‘cgs’ subscript respectively. The fixed unit definitions
which define a unit system and can be used to convert between dimensionless
and dimensionful variables (e.g. Tcode = Tcgs/T0) will be given a subscript 0.

1 The Foolproof Method: T unit , density unit ,
length unit , and molecular weight

In this case one defines a temperature scale T0, density scale ρ0, length scale l0,
and mean molecular weight µ0 which forms a system of units for the hydrody-
namics. These should all be chosen to be close to characteristic scales of your
problem to limit the influence of roundoff error – e.g. if you are simulating a disk
a reasonable choice of length scale could be a disk scale height or a disk radius.
These should be specified in cgs units in the radiation block of the input file

with unit = 1 , with the exception of µ0 which is in amu. For example,

1 <radiation >

2 unit = 1

3 T_unit = 1.0e3 # Kelvin

4 density_unit = 1.0e-8 # g/cm^3

5 length_unit = 1.496 e13 # cm

6 molecular_weight = 2.0 # atomic mass units

By themselves, the above variables do not close a system of hydrodynamic
units (mass, length, time) as there is no formal time unit in the above code
block. With the above, the radiation module adopts a convention that the
velocity unit will be defined by the isothermal sound speed at the user specified
temperature and molecular weight v0 ≡

√
RT0/µ0, so that the time unit is

t0 ≡ l0/v0 = l0(RT0/µ0)
−1/2 (where R = 8.31 × 107 erg/mole/K is the ideal

gas constant). This choice of velocity unit means that if one wants to run an

1



equivalent isothermal simulation, they should set iso sound speed = 1.0 in

the input file. This choice also means that in code units, the ideal gas law is
simply pcode = ρcodeTcode. To see this we write the dimensional ideal gas law
pcgs = ρcgsRTcgs/µ and divide both sides by p0 ≡ ρ0l

2
0/t

2
0 to get

pcgs
p0

=

(
ρcgs
ρ0

)
RTcgs

µ

(
t20
l20

)
(1)

with constant µ = µ0 and using t0 ≡ l0(RT0/µ0)
−1/2, one gets

pcgs
p0

=

(
ρcgs
ρ0

)(
Tcgs

T0

)
(2)

which is just pcode = ρcodeTcode.
Finally, we remark on units of the radiation subsystem of the code. Funda-

mentally the code cares about one variable the specific intensity I or radiation
energy per unit area per unit time per unit direction (per unit frequency, if
using frequency dependent transfer). The code units of intensity are specifically
chosen to be

Icode =
Icgs

acT 4
0 /(4π)

. (3)

This has the convenient property that if one wants to define an intensity which
is in radiative equilbrium with gas described by an LTE source function B =
acT 4/(4π), this is prescribed simply by setting Icode = T 4

code. In addition to
intensity, there are three derived quantities or moments of intensity which the
code will compute. These are mean radiation energy density Er, radiative flux
Fr, and the radiation pressure tensor Pr. Normally these are defined as angular
moments of intensity as follows

Er =
1

c

∫
I(n̂)dΩ (4)

Fr =

∫
I(n̂)n̂dΩ (5)

Pr =
1

c

∫
I(n̂)n̂n̂dΩ (6)

The code however, normalizes angle integrals to 1 instead of 4π (dΩcode =
dΩcgs/4π, so 1 =

∫
dΩcode) and drops all factors of 1/c outside the integral.

This makes the code definitions

Er,code =

∫
I(n̂)codedΩcode (7)

Fr,code =

∫
I(n̂)coden̂dΩcode (8)

Pr,code =

∫
I(n̂)coden̂n̂dΩcode (9)

2



which can be combined with the definition dΩcode and equation 3, to yield the
cgs conversion factors

Er,code =

∫
I(n̂)cgs
acT 4

0

dΩcgs =
Er,cgs

aT 4
0

(10)

Fr,code =

∫
I(n̂)code
acT 4

0

n̂dΩcgs =
Fr,cgs

acT 4
0

(11)

Pr,code =

∫
I(n̂)code
acT 4

0

n̂n̂dΩcgs =
Pr,cgs

aT 4
0

(12)

The last radiation quantity is the opacity κ. The opacity the code uses is not
the usual opacity with units of g/cm2, rather it is the product of opacity and
density σ ≡ κρ, this is a cross-section per volume or an inverse mean-free path
and has units of (length)−1. Confusingly both σ and κ are often referred to as
‘opacities’. The opacity with units of inverse length is defined in code units just
in terms of the user-supplied l0, → σcode = σcgsl0. Note that if you have opacity
κcgs, the appropriate way to enroll it is σcode = ρcode(κcgsρ0l0) ̸= ρ0(κcgsρ0l0),
as ρcode is often a function of position and ρ0 is by definition a constant.

Below is a summary of all conversion factors one needs to know for this setup.
To convert from code to cgs and vice-versa simply divide by the appropriate
factor (pcode = pcgs/p0).

Table 1: Unit conversions in terms of fundamental parameters (ρ0, T0, l0, µ0)
unit symbol conversion factor

density ρ0 density unit

temperature T0 T unit

length l0 length unit

molecular weight µ0 molecular weight

velocity v0
√
RT0/µ0

time t0 l0/
√

RT0/µ0

pressure p0 ρ0RT0/µ0

intensity I0 acT 4
0 /(4π)

radiation energy density Er,0 aT 4
0

radiative flux Fr,0 acT 4
0

radiation pressure pr,0 aT 4
0

opacity σ0 (l0)
−1

1.1 Best Practices

1. Quantities given in the input file should be supplied in cgs units.

You can always give preferred units or dimensionless equivalents as com-
ments next to the cgs values e.g.

3



1 <problem >

2 softening = 7.1492 e9 # cm = 1 Jupiter radius

3 opacity = 0.01 # cm^2/g = 100 dimensionless opacity

The exception is mesh quantities (like mesh/x1min ) which, since they go
directly to the mesh constructor, need to be in code units.

2. Convert dimensional quantities to dimensionless quantities in
the InitUserMeshData and InitUserMeshBlockData functions.

Having cgs variables floating around that need to be converted to dimen-
sionless values every time they are used is cumbersome. It is best to read in
the cgs values and immediately convert them to dimensionless. This also
compartmentalizes conversions to a block of code so they are immediately
readable and retrievable. This can be done for fundamental constants as
well, as is done for the gravitational constant in the following.

1 static Real T0;

2 static Real H0;

3 static Real rho0;

4 static Real mol_weight;

5 static Real t0;

6 static Real heatrate; // ergs/g/s

7 static Real opacity; // cm^2/g

8 static Real constG = 6.6743e-8;

9

10 void Mesh:: InitUserMeshData(ParameterInput *pin)

11 {

12 T0 = pin ->GetReal("radiation", "T_unit");

13 H0 = pin ->GetReal("radiation", "length_unit");

14 rho0 = pin ->GetReal("radiation", "density_unit");

15 mol_weight = pin ->GetReal("radiation", "molecular_weight");

16 Real r_ideal = 8.314462618 e7/mol_weight;

17 t0 = H0/std::sqrt(r_ideal*T0);

18 heatrate = pin ->GetOrAddReal("problem", "heatrate", 0.0);

19 opacity = pin ->GetOrAddReal("problem", "opacity", 0.0);

20 // make quantities dimensionless

21 heatrate *= t0*t0*t0/H0/H0;

22 opacity *= rho0*H0;

23 constG *= rho0*t0*t0;

24 return;

25 }

4


