
Heated Atmosphere Test for Radiative Transfer

Avery Bailey

Here we describe the procedure for a test of the Athena++ radiation module
where a 1D atmosphere subject to internal heating is allowed to radiatively cool.
Eventually, radiative cooling balances internal heating such that a steady-state
is reached. This steady-state solution can be obtained by analytic means and
compared to the simulation. This test was originally suggested by Zhu & Jiang
(2020).

1 Setup

The problem generator (here) and input file (here) for this test can be found at
the respective links. This test is designed to only test energetics and not dy-
namics so requires two additional modifications to the source code to effectively
turn off hydrodynamics. The first is to remove ‘hydro’ updates to the equations
so line 90 of add flux divergence.cpp should be commented out.

// update conserved variables

pmb ->pcoord ->CellVolume(k, j, is , ie, vol);

for (int n=0; n<NHYDRO; ++n) {

#pragma omp simd

for (int i=is; i<=ie; ++i) {

// u_out(n,k,j,i) -= wght*dflx(n,i)/vol(i);

}

}

The second is to remove radiation updates to the non-energy (velocity) equa-
tions. To do this comment out lines 533-535 in rad source.cpp .

for (int k=ks; k<=ke; ++k) {

for (int j=js; j<=je; ++j) {

for (int i=is; i<=ie; ++i) {

// u(IM1 ,k,j,i) += rad_source (1,k,j,i);

// u(IM2 ,k,j,i) += rad_source (2,k,j,i);

// u(IM3 ,k,j,i) += rad_source (3,k,j,i);

with this the problem generator can be compiled

python configure.py --prob=atmosphere_dimensional -

implicit_radiation

1

https://academic.oup.com/mnras/article/495/3/3494/5817857
https://academic.oup.com/mnras/article/495/3/3494/5817857
https://avery.science/assets/files/atmosphere_dimensional.cpp
https://avery.science/assets/files/athinput.atmosphere

1.1 Problem Generator

1.1.1 Parameters

The problem takes several input parameters to setup the problem. Required
are all the unit condsiderations T unit , length unit , density unit , and

molecular weight which set the initial isothermal temperature, scale height,

midplane density, and molecular weight of the atmosphere. These should be set
in cgs units in the input file. Then are two problem parameters: the heating
rate heatrate and constant opacity opacity which should be supplied in

ergs/s/g and cm2/g respectively. These are read into the problem generator
and converted to code units as follows:

T0 = pin ->GetReal("radiation", "T_unit");

H0 = pin ->GetReal("radiation", "length_unit");

rho0 = pin ->GetReal("radiation", "density_unit");

mol_weight = pin ->GetReal("radiation", "molecular_weight");

Real r_ideal = 8.314462618 e7/mol_weight;

t0 = H0/std::sqrt(r_ideal*T0); // timeunit

heatrate = pin ->GetOrAddReal("problem", "heatrate", 0.0);

opacity = pin ->GetOrAddReal("problem", "opacity", 0.0);

// make heatrate and opacity dimensionless

heatrate *= t0*t0*t0/H0/H0;

opacity *= rho0*H0;

1.1.2 Initial Condition

The initial condition is that of an isothermal vertically stratified disk, i.e. gaus-
sian density and pressure profiles. In the code, this looks like:

for(int k=ks; k<=ke; ++k) {

for (int j=js; j<=je; ++j) {

for (int i=is; i<=ie; ++i) {

Real x1 = pcoord ->x1v(i);

phydro ->u(IDN ,k,j,i) = exp(-x1*x1 *0.5);

phydro ->u(IM1 ,k,j,i) = 0.0;

phydro ->u(IM2 ,k,j,i) = 0.0;

phydro ->u(IM3 ,k,j,i) = 0.0;

if (NON_BAROTROPIC_EOS){

phydro ->u(IEN ,k,j,i) = phydro ->u(IDN ,k,j,i)/(gamma_gas

-1.0);

phydro ->u(IEN ,k,j,i) += 0.5* SQR(phydro ->u(IM1 ,k,j,i))/

phydro ->u(IDN ,k,j,i);

phydro ->u(IEN ,k,j,i) += 0.5* SQR(phydro ->u(IM2 ,k,j,i))/

phydro ->u(IDN ,k,j,i);

phydro ->u(IEN ,k,j,i) += 0.5* SQR(phydro ->u(IM3 ,k,j,i))/

phydro ->u(IDN ,k,j,i);

}

}

}

}

We then set the initial condition for the radiation field which we take to be in
equilibrium with the gas initial condition (I = T 4 = 1 in code units).

2

// Now initialize opacity and specific intensity

if (NR_RADIATION_ENABLED || IM_RADIATION_ENABLED) {

int nfreq = pnrrad ->nfreq;

for (int k=ks; k<=ke; ++k) {

for (int j=js; j<=je; ++j) {

for (int i=is; i<=ie; ++i) {

for (int ifr=0; ifr < nfreq; ++ifr) {

pnrrad ->sigma_s(k,j,i,ifr) = 0.0;

pnrrad ->sigma_a(k,j,i,ifr) = opacity*phydro ->u(IDN ,k,j,

i);

pnrrad ->sigma_pe(k,j,i,ifr) = opacity*phydro ->u(IDN ,k,j

,i);

pnrrad ->sigma_p(k,j,i,ifr) = opacity*phydro ->u(IDN ,k,j,

i);

}

for (int n=0; n<pnrrad ->n_fre_ang; ++n) {

// T = 1 everywhere in code units so equilibrium

// is given by ir = T^4 = 1

pnrrad ->ir(k,j,i,n) = 1.0;

}

}

}

}

}

1.1.3 Source Term

Internal heating is supplied as a source term. This is the most-appropriate way
to do things as opposed to a UserWorkInLoop because source terms are applied

during every stage of integration whereas UserWorkInLoop is only applied once

after all stages have finished.

void Source(MeshBlock *pmb , const Real time , const Real dt,

const AthenaArray <Real > &prim , const AthenaArray <Real >

&prim_scalar ,

const AthenaArray <Real > &bcc , AthenaArray <Real > &cons ,

AthenaArray <Real > &cons_scalar)

{

for (int k=pmb ->ks; k<=pmb ->ke; ++k) {

for (int j=pmb ->js; j<=pmb ->je; ++j) {

for (int i=pmb ->is; i<=pmb ->ie; ++i) {

Real x = pmb ->pcoord ->x1v(i);

if (NON_BAROTROPIC_EOS) {

cons(IEN ,k,j,i) += heatrate*prim(IDN ,k,j,i)*dt;

}

}

}

}

return;

}

3

1.1.4 Boundary Condition

Because the hydrodynamics is not evolved, the boundary condition is not par-
ticularly important so we just set it to be an outflow condition.

void DiskInnerOutflowX1(MeshBlock *pmb , Coordinates *pco ,

AthenaArray <Real > &prim , FaceField &b,

Real time , Real dt, int is, int ie , int js , int je

, int ks, int ke , int ngh)

{

for (int n=0; n<(NHYDRO); ++n) {

for (int k=ks; k<=ke; ++k) {

for (int j=js; j<=je; ++j) {

for (int i=1; i<=ngh; ++i) {

prim(n,k,j,is-i) = prim(n,k,j,is);

}

}

}

}

return;

}

The radiation boundary condition on the other hand is very important since
the steady state solution is essentially a boundary-value problem. We set the
boundary condition to be that of a vacuum, in the sense that incoming intensities
are set to zero and outgoing intensities are analogous to the standard outflow
boundaries of hydrodynamics. We use the variable mu (the angle cosines) to
distinguish between ingoing and outgoing rays.

void DiskRadInnerX1(MeshBlock *pmb , Coordinates *pco , NRRadiation *

prad ,

const AthenaArray <Real > &w, FaceField &b,

AthenaArray <Real > &ir,

Real time , Real dt,

int is, int ie, int js , int je, int ks, int ke , int

ngh) {

int nang=prad ->nang;

int nfreq=prad ->nfreq;

for (int k=ks; k<=ke; ++k) {

for (int j=js; j<=je; ++j) {

for (int i=1; i<=ngh; ++i) {

for (int ifr=0; ifr <nfreq; ++ifr) {

for(int n=0; n<nang; ++n){

int ang = ifr*nang + n;

Real& miux=prad ->mu(0,k,j,is-i,n);

if (miux < 0.0)

ir(k,j,is-i,ang) = ir(k,j,is,n);

else

ir(k,j,is-i,ang) = 0.0;

}

}

}

}

}

return;

}

4

2 The Analytic Solution

While the code evolves an initial boundary problem, if the code is run long
enough the atmosphere will reach a steady state at which point the atmosphere
state is determined by a boundary value problem. While the radiative boundary
value problem does not in general have an analytic solution, if we run the code
using nmu=1 (one upward angle, one downward) we are solving the radiative
transfer under a two-stream approximation which does indeed have an analytic
solution. In this section we derive the analytic solution for the two-stream steady
state heated atmosphere. For background on the two-stream approximation,
see the last section of Chapter 1 of Rybicki & Lightman. In the two stream
approximation we have

1

3

∂2J

∂τ2
= ϵ (J −B) (1)

In steady state, we also have the terms due to radiative cooling/heating equal
to heating in the disk

∂E

∂t
= 4π(σa + σs) (J − S)︸ ︷︷ ︸

radiative cooling

+ Cρ︸︷︷︸
viscous heating

= 0 (2)

Where C is a constant determining the heating rate in the disk. Assuming
σs = 0 gives ϵ → 1 and S → B so,

1

3

∂2J

∂τ2
= J −B = − Cρ

4πσa
(3)

Replacing with the opacity κ = σ/ρ,

∂2J

∂τ2
=

3C

4πκ
(4)

In steady state we know that the total heating put into the disk must be the
same as the heat leaving through the boundaries. The total integrated heat
input rate in a column of area A:

Ė = A

∫ ∞

−∞
Cρdz (5)

which must be equal to the flux emitted at both the upper and lower surfaces
of the disk. If we define the flux (i.e. Ė/A) from one edge of the disk as σT 4

eff,
then because of the midplane symmetry

σT 4
eff =

∫ ∞

0

Cρdz = C

∫ ∞

0

dτ

κ
=

Cτ1/2

κ
(6)

if C, κ are constant and we’ve defined the optical depth to midplane τ1/2.
Substituting the heating rate C = σT 4

effκ/τ1/2 for the flux in Equation 4, we get

∂2J

∂τ2
= − 3σT 4

eff

4πτ1/2
(7)

5

which can be integrated to find J(τ), B(τ). Integrating the equation we get:

J = − 3σT 4
eff

4πτ1/2

τ2

2
+A1τ +A0 (8)

Our first condition comes from the fact that the ingoing flux is 0 at the outer
boundary. In the two stream approximation,

I− = J − 1√
3

∂J

∂τ
(9)

which at τ = 0 becomes,
∂J

∂τ
=

√
3J (10)

Plugging in J gives,
A1 =

√
3A0 (11)

Now we have

J = − 3σT 4
eff

4πτ1/2

τ2

2
+A1τ +

A1√
3

(12)

But we also know the flux H is 0 at τ = τ1/2. In the two stream approximation
(3H = dJ/dτ) this means:

∂J

∂τ
= 0 (13)

Which means,

A1 =
3σT 4

eff

4π
(14)

Finally we get,

J = − 3σT 4
eff

4πτ1/2

τ2

2
+

3σT 4
eff

4π
τ +

1√
3

3σT 4
eff

4π
(15)

Or,

J =
3σT 4

eff

4π

[
τ

(
1− τ

2τ1/2

)
+

1√
3

]
(16)

Also because J −B = J − σT 4/π = −C/4πκ = −σT 4
eff/4πτ1/2,

T =

(
πJ

σ
+

T 4
eff

4τ1/2

)1/4

(17)

T =

(
3T 4

eff

4

[
τ

(
1− τ

2τ1/2

)
+

1√
3
+

1

3τ1/2

])1/4

(18)

where again T 4
eff ≡ Cτ1/2/(σκ)

6

3 Running the Test

Try running the test problem, it should take about ∼ 5 minutes on a single core
standard laptop. You can make a plot like Figure 1 of the temperature evolving
to steady state and compare with the analytic solution (python plotting script
here).

Figure 1: Evolution of the atmosphere to the analytic steady state solution

4 Exercises

Here are some extensions to this test that you can try.

• The default problem simulates both the upper and lower halves of the
disk, try instead to simulate the upper half of the disk with a reflecting
boundary at the midplane. Confirm the solutions are identical between
setups.

• The steady state solution does not depend on the initial condition, only on
the optical depth distribution and the heating rate. Confirm that different
initial conditions will produce the same steady state so long as the product
of ρκ and the heating rate are unchanged.

7

https://avery.science/assets/files/plot_atmosphere.py

• While we have an analytic solution to this case with two angles (nmu=1),
we do not have one in general. Run the problem with many more angles
and see how well this two-stream approximation works compared to reality.
See if the magnitude of this discrepancy changes as you change the opacity
from optically thick to optically thin.

• The analytic solution does not depend on having a vertical-disk like struc-
ture and applies to any fixed density/opacity distribution. Modify the
problem generator to instead use an initial condition for a isothermal at-
mosphere under a constant gravitational acceleration (i.e. exponential)
with terrestrial parameters (T0 = 300 K, ρ0 = 10−3 g/cm3, g = 100
cm/s2).

Don’t forget to uncomment the changes made to the source code
when you’re done with this test.

8

	Setup
	Problem Generator
	Parameters
	Initial Condition
	Source Term
	Boundary Condition

	The Analytic Solution
	Running the Test
	Exercises

