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We look for a frequency-integrated transfer equation such that it reduces to a
desired set of frequency-integrated moments. This is the form of the frequency-
integrated transfer equation used by the Athena++ code. See also Foundations
of Radiation Hydrodynamics by Mihalas & Mihalas section 82 for related ideas.

0.1 Definitions

The specific energy density of radiation Eν , the radiative energy flux F⃗ν , and
radiation pressure tensor Pν , whose components are given by
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where µi = n̂ · x̂i, with x̂i some basis vector. Frequency-integrated quantities
will be denoted by dropping the ν subscript, B ≡

∫
Bνdν = σT 4/π for example.

Furthermore define Planck opacity

κp ≡ 1

B

∫
κa,νBνdν (4)

and Rosseland mean opacities
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0.2 Moments of the transfer equation

The time-dependent transfer equation is

1

c

∂Iν
∂t

+ n̂ · ∇Iν = (σa,ν + σs,ν) (Sν − Iν) (7)

We can plug in the source function Sν for isotropic scattering,

Sν =
σa,νBν

σa,ν + σs,ν
+

σs,νJν
σa,ν + σs,ν

(8)

to get
1

c

∂Iν
∂t

+ n̂ · ∇Iν = σa,νBν + σs,νJν − (σa,ν + σs,ν) Iν (9)

0.2.1 Zeroth moment transfer equation

We can take the zeroth moment of this equation,∫
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to get the frequency-dependent zeroth moment transfer equation

∂Eν

∂t
+∇ · F⃗ν = 4πσa,ν(Bν − Jν) (11)

We can try to get a frequency-integrated form by integrating each term over
frequency: ∫

∂Eν

∂t
dν +

∫
∇ · F⃗νdν =

∫
4πσa,ν(Bν − Jν)dν (12)

because Bν is a known function, we can take care of the Bν integral by leveraging
the Planck opacity, but the Jν term can’t be integrated over without solving
the full frequency-dependent transfer.

∂E

∂t
+∇ · F⃗ = 4πσpB − 4π

∫
σa,νJνdν (13)

But maybe we can approximate σa,ν with a frequency-integrated opacity that
isn’t so bad. To figure out what frequency-integrated opacity we should use
we look at the frequency-dependent zeroth moment transfer equation (11) and
its limiting behavior. At high optical depth Iν → Bν and the source term
4πσa,ν(Bν − Jν) → 0 and the precise value of σa,ν is not so important. At
low optical depth however, Bν and Jν can be very different. To maximize
correctness in all regimes then we ought to use a frequency-integrated opacity
which is more concerned with getting the right absorption in the optically thin
regime i.e. the Planck opacity σp ≡ ρκp. With this in mind, our approximately
correct frequency-integrated zeroth moment equation is:

∂E

∂t
+∇ · F⃗ = 4πσp(B − J) (14)
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0.2.2 First moment transfer equation

We can also take the first moment of the transfer equation∫
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to get a vector equation for the frequency-dependent first order transfer equa-
tion,

1

c

∂F⃗ν

∂t
+ c∇ ·Pν = −(σa,ν + σs,ν)F⃗ν (16)

We again attempt to frequency integrate this∫
1

c

∂F⃗ν

∂t
dν +

∫
c∇ ·Pνdν = −

∫
(σa,ν + σs,ν)F⃗νdν (17)

but are stuck with the source term because we don’t a priori know the form of
Fν

1

c

∂F⃗

∂t
+ c∇ ·P = −

∫
(σa,ν + σs,ν)F⃗νdν (18)

We opt for opacities that recover the appropriate fluxes in the diffusion limit
by taking Rosseland mean opacities σa ≡ ρκa and σs ≡ ρκs. (Note: it is not
entirely precise to use the split scattering and absorption Rosseland means when
typically the the Rosseland mean includes both scattering and absorption, i.e.
1/σa + 1/σs ̸= 1/(σa + σs)) In any case we make the first-moment frequency
integrated equation to look like

1

c

∂F⃗

∂t
+ c∇ ·P = −(σa + σs)F⃗ (19)

0.3 Frequency-integrated form of transfer equation

We now look for a frequency integrated form of

1

c

∂Iν
∂t

+ n̂ · ∇Iν = σa,νBν + σs,νJν − (σa,ν + σs,ν) Iν (20)

such that two boxed equations are recovered when taking moments. We can
supply our frequency integrated transfer equation with arbitrary coefficients
(X,Y, Z) and then take moments to figure out the required coefficients.

1

c

∂I

∂t
+ n̂ · ∇I = XB + Y J + ZI (21)
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Frequency Integrated Zeroth Moment:

∂E

∂t
+∇ · F⃗ = XB + (Y + Z)J (22)

Frequency Integrated First Moment:

1

c

∂F⃗

∂t
+ c∇ ·P = ZF⃗ (23)

which upon comparing with the boxed moment equations yields the conditions:

X = σp

Y + Z = −σp

Z = − (σa + σs)

so that the frequency integrated transfer equation ought to be:

1

c

∂I

∂t
+ n̂ · ∇I = σpB + (σa + σs − σp)Jν − (σa + σs) Iν (24)

if we would like it to recover the frequency-integrated zeroth and first moments
given above upon taking appropriate integrals.
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