An Approximate Frequency-Integrated Transfer Equation

Avery Bailey

We look for a frequency-integrated transfer equation such that it reduces to a desired set of frequency-integrated moments. This is the form of the frequencyintegrated transfer equation used by the Athena++ code. See also Foundations of Radiation Hydrodynamics by Mihalas & Mihalas section 82 for related ideas.

0.1 Definitions

The specific energy density of radiation E_{ν} , the radiative energy flux \vec{F}_{ν} , and radiation pressure tensor P_{ν} , whose components are given by

$$
J_{\nu} = \frac{1}{4\pi} \int I_{\nu}(\hat{n}) d\Omega \qquad E_{\nu} = \frac{1}{c} \int I_{\nu}(\hat{n}) d\Omega = \frac{4\pi J_{\nu}}{c} \qquad (1)
$$

$$
H_{\nu}^{i} = \frac{1}{4\pi} \int \mu_{i} I_{\nu}(\hat{n}) d\Omega \qquad F_{\nu}^{i} = \int \mu_{i} I_{\nu}(\hat{n}) d\Omega = 4\pi H_{\nu}^{i} \qquad (2)
$$

$$
K_{\nu}^{ij} = \frac{1}{4\pi} \int \mu_i \mu_j I_{\nu}(\hat{n}) d\Omega \qquad P_{\nu}^{ij} = \frac{1}{c} \int \mu_i \mu_j I_{\nu}(\hat{n}) d\Omega = \frac{4\pi K_{\nu}^{ij}}{c} \qquad (3)
$$

where $\mu_i = \hat{n} \cdot \hat{x}_i$, with \hat{x}_i some basis vector. Frequency-integrated quantities will be denoted by dropping the ν subscript, $B \equiv \int B_{\nu} d\nu = \sigma T^4/\pi$ for example. Furthermore define Planck opacity

$$
\kappa_p \equiv \frac{1}{B} \int \kappa_{a,\nu} B_{\nu} d\nu \tag{4}
$$

and Rosseland mean opacities

$$
\kappa_s \equiv \left(\frac{\int \partial B/\partial T d\nu}{\int \frac{\partial B/\partial T}{\kappa_{s,\nu}} d\nu}\right)^{-1} \tag{5}
$$

$$
\kappa_a \equiv \left(\frac{\int \partial B/\partial T d\nu}{\int \frac{\partial B/\partial T}{\kappa_{a,\nu}} d\nu}\right)^{-1} \tag{6}
$$

0.2 Moments of the transfer equation

The time-dependent transfer equation is

$$
\frac{1}{c}\frac{\partial I_{\nu}}{\partial t} + \hat{n} \cdot \nabla I_{\nu} = (\sigma_{a,\nu} + \sigma_{s,\nu})\left(S_{\nu} - I_{\nu}\right)
$$
\n(7)

We can plug in the source function S_{ν} for isotropic scattering,

$$
S_{\nu} = \frac{\sigma_{a,\nu} B_{\nu}}{\sigma_{a,\nu} + \sigma_{s,\nu}} + \frac{\sigma_{s,\nu} J_{\nu}}{\sigma_{a,\nu} + \sigma_{s,\nu}}
$$
(8)

to get

$$
\frac{1}{c}\frac{\partial I_{\nu}}{\partial t} + \hat{n} \cdot \nabla I_{\nu} = \sigma_{a,\nu}B_{\nu} + \sigma_{s,\nu}J_{\nu} - (\sigma_{a,\nu} + \sigma_{s,\nu})I_{\nu}
$$
(9)

0.2.1 Zeroth moment transfer equation

We can take the zeroth moment of this equation,

$$
\underbrace{\int_{\frac{1}{c}\frac{\partial I_{\nu}}{\partial t}d\Omega}_{\frac{4\pi}{c}\frac{\partial J_{\nu}}{\partial t}} + \underbrace{\int_{\hat{\pi}} \hat{n} \cdot \nabla I_{\nu}d\Omega}_{\nabla \cdot \vec{F}_{\nu}} = \underbrace{\int_{\sigma_{a,\nu}B_{\nu}d\Omega} + \int_{\sigma_{s,\nu}J_{\nu}d\Omega}_{\sigma_{a,\nu}J_{\nu}} - \underbrace{\int_{\sigma_{a,\nu}+\sigma_{s,\nu}}(\sigma_{a,\nu} + \sigma_{s,\nu}) I_{\nu}d\Omega}_{\frac{4\pi}{c}\sigma_{a,\nu} + \sigma_{s,\nu}J_{\nu}}
$$
\n(10)

to get the frequency-dependent zeroth moment transfer equation

$$
\frac{\partial E_{\nu}}{\partial t} + \nabla \cdot \vec{F}_{\nu} = 4\pi \sigma_{a,\nu} (B_{\nu} - J_{\nu})
$$
\n(11)

We can try to get a frequency-integrated form by integrating each term over frequency:

$$
\int \frac{\partial E_{\nu}}{\partial t} d\nu + \int \nabla \cdot \vec{F}_{\nu} d\nu = \int 4\pi \sigma_{a,\nu} (B_{\nu} - J_{\nu}) d\nu \tag{12}
$$

because B_{ν} is a known function, we can take care of the B_{ν} integral by leveraging the Planck opacity, but the J_{ν} term can't be integrated over without solving the full frequency-dependent transfer.

$$
\frac{\partial E}{\partial t} + \nabla \cdot \vec{F} = 4\pi \sigma_p B - 4\pi \int \sigma_{a,\nu} J_{\nu} d\nu \tag{13}
$$

But maybe we can approximate $\sigma_{a,\nu}$ with a frequency-integrated opacity that isn't so bad. To figure out what frequency-integrated opacity we should use we look at the frequency-dependent zeroth moment transfer equation (11) and its limiting behavior. At high optical depth $I_{\nu} \to B_{\nu}$ and the source term $4\pi\sigma_{a,\nu}(B_{\nu}-J_{\nu})\rightarrow 0$ and the precise value of $\sigma_{a,\nu}$ is not so important. At low optical depth however, B_{ν} and J_{ν} can be very different. To maximize correctness in all regimes then we ought to use a frequency-integrated opacity which is more concerned with getting the right absorption in the optically thin regime i.e. the Planck opacity $\sigma_p \equiv \rho \kappa_p$. With this in mind, our approximately correct frequency-integrated zeroth moment equation is:

$$
\frac{\partial E}{\partial t} + \nabla \cdot \vec{F} = 4\pi \sigma_p (B - J) \tag{14}
$$

0.2.2 First moment transfer equation

We can also take the first moment of the transfer equation

$$
\underbrace{\int_{-\frac{4\pi}{c}}^{\mu_{i}} \frac{\partial I_{\nu}}{\partial t} d\Omega}_{=\underbrace{\int_{-\frac{4\pi}{c}}^{\mu_{i}} \frac{\partial H_{\nu}^{i}}{\partial t}}_{0} + \underbrace{\int_{-\frac{4\pi}{c}}^{\mu_{i}} \frac{\partial I_{\nu}}{\partial t} d\Omega}_{0} + \underbrace{\int_{-\frac{4\pi}{c}}^{\mu_{i}} \frac{\partial I_{\nu}}{\partial s, \nu} J_{\nu} d\Omega}_{0} - \underbrace{\int_{-\frac{4\pi}{c}}^{\mu_{i}} (\sigma_{a,\nu} + \sigma_{s,\nu}) I_{\nu} d\Omega}_{4\pi(\sigma_{a,\nu} + \sigma_{s,\nu}) H_{\nu}^{i}} \tag{15}
$$

to get a vector equation for the frequency-dependent first order transfer equation,

$$
\frac{1}{c}\frac{\partial \vec{F}_{\nu}}{\partial t} + c\nabla \cdot \mathbf{P}_{\nu} = -(\sigma_{a,\nu} + \sigma_{s,\nu})\vec{F}_{\nu}
$$
\n(16)

We again attempt to frequency integrate this

$$
\int \frac{1}{c} \frac{\partial \vec{F}_{\nu}}{\partial t} d\nu + \int c \nabla \cdot \mathbf{P}_{\nu} d\nu = -\int (\sigma_{a,\nu} + \sigma_{s,\nu}) \vec{F}_{\nu} d\nu \tag{17}
$$

but are stuck with the source term because we don't a priori know the form of F_{ν}

$$
\frac{1}{c}\frac{\partial \vec{F}}{\partial t} + c\nabla \cdot \mathbf{P} = -\int (\sigma_{a,\nu} + \sigma_{s,\nu}) \vec{F}_{\nu} d\nu \tag{18}
$$

We opt for opacities that recover the appropriate fluxes in the diffusion limit by taking Rosseland mean opacities $\sigma_a \equiv \rho \kappa_a$ and $\sigma_s \equiv \rho \kappa_s$. (Note: it is not entirely precise to use the split scattering and absorption Rosseland means when typically the the Rosseland mean includes both scattering and absorption, i.e. $1/\sigma_a + 1/\sigma_s \neq 1/(\sigma_a + \sigma_s)$ In any case we make the first-moment frequency integrated equation to look like

$$
\left[\frac{1}{c} \frac{\partial \vec{F}}{\partial t} + c \nabla \cdot \mathbf{P} = -(\sigma_a + \sigma_s) \vec{F} \right]
$$
 (19)

0.3 Frequency-integrated form of transfer equation

We now look for a frequency integrated form of

$$
\frac{1}{c}\frac{\partial I_{\nu}}{\partial t} + \hat{n} \cdot \nabla I_{\nu} = \sigma_{a,\nu}B_{\nu} + \sigma_{s,\nu}J_{\nu} - (\sigma_{a,\nu} + \sigma_{s,\nu})I_{\nu}
$$
(20)

such that two boxed equations are recovered when taking moments. We can supply our frequency integrated transfer equation with arbitrary coefficients (X, Y, Z) and then take moments to figure out the required coefficients.

$$
\frac{1}{c}\frac{\partial I}{\partial t} + \hat{n} \cdot \nabla I = XB + YJ + ZI
$$
\n(21)

Frequency Integrated Zeroth Moment:

$$
\frac{\partial E}{\partial t} + \nabla \cdot \vec{F} = XB + (Y + Z)J \tag{22}
$$

Frequency Integrated First Moment:

$$
\frac{1}{c}\frac{\partial \vec{F}}{\partial t} + c\nabla \cdot \mathbf{P} = Z\vec{F}
$$
 (23)

which upon comparing with the boxed moment equations yields the conditions:

$$
X = \sigma_p
$$

$$
Y + Z = -\sigma_p
$$

$$
Z = -(\sigma_a + \sigma_s)
$$

so that the frequency integrated transfer equation ought to be:

$$
\left[\frac{1}{c} \frac{\partial I}{\partial t} + \hat{n} \cdot \nabla I = \sigma_p B + (\sigma_a + \sigma_s - \sigma_p) J_\nu - (\sigma_a + \sigma_s) I_\nu \right]
$$
 (24)

if we would like it to recover the frequency-integrated zeroth and first moments given above upon taking appropriate integrals.